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Abstract. This report is dedicated to demonstrating the simulation steps and corresponding simulation
results in comparison with results obtained in class under various queueing models.
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Figure 1.1. Histogram of PRNG

1. Introduction to Pseudo Random Number Generator (PRNG)
PRNG plays a very import role in statistical simulations. Arbitrary random variable with given distribu-

tion can be generated using PRNG. Many active research has been done to generate a good shaped random
number and extensive randomness tests have been developed to test the performance of PRNG. Mersenne
Twister[1] random number generator was proposed by two Japanese mathematicians in an ACM journal
paper , which has been proved to be an e�cient PRNG with period of 219937 − 1and with 623-dimensional
equidistribution property. This MT-PRNG is often referred as �Many specialists in the �eld of random
number generation consider MT as the current champion, ie., the best RNG for stochastic simulation�[2].

I modi�ed the state-of-the-art C-version of MT PRNG to Matlab version MT PRNG in my simulations.[3]In
order to test and compare the performance between MT PRNG and Matlab built-in PRNG function rand(),
generate 100, 000samples using these two methods and plotted histograms as shown in Figure1. Both random
number generator works well intuitively.I checked the course notes [4]and Kumar's book [6] and queueing
theory [7] for theoretical results of the queueing model. Some simulation techniques are referred to Sheldon
M Ross's book on simulation. [5]

2. Random Number Generation With Given Distributions
Arbitrarily distributed random variable can be generated using Uniform distributed random variable.

Assume CDFX(X ≤ a) = F and let X = F−1(U). By de�nition of the Cumulative Distribution Function and
characteristics of uniform distribution , we get CDFX(X ≤ a) = Pr

(
F−1(U) ≤ a

)
= Pr (U ≤ F (a)) = F (a)

[4], which implies that X = F−1(U) follows distribution with desired CDF. Hence X = − 1
λ ln (1− U) follows

exponential distribution with mean of 1
λ . Poisson random variable can be generated by searching the look-

up table of CDF of Poisson distributed random variable: We generate a uniform random variable U and
search the integer whose corresponding CDF is the right-nearest to U . It is a kind of inverse manipulation
of CDF from R[0, 1] → N.

The CCDF exponential random variable and Poisson random variable are plotted shown in Figure 2.1
It is almost a perfect match to the CCDF in theory for both exponential and Poisson distributed random

variables. Notice that for exponential distribution, the CCDF values deviate a little from theoretic values
when X is large. It should be noted that the probability density almost reaches zero at this point and the
deviation is partially due to precision limitation of matlab.
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Figure 2.1. CCDF of X and Y

3. Statistical Simulation of Queues
I should claim that the server works in a First Come First Serve(FCFS) and in a work-conserving

mode in the simulations.
I simulate the M |M |1 queueing system by considering the departures in each inter-arrival time. I con-

structed an array that stores the arrival index of the arrivals which are still in the system at each arrival
time. In another word, the array is the queue seen by a newly arrived packet, not including itself. I generate
the inter-arrival time and service time according to the requirement of the service system and we should
notice that each packet's departure time is fully determined at its arrival time. It does not necessarily mean
that the residual service time and waiting time are deterministic. From the simulation's point of view, the
simulated process is always a realization (sample path) of the random process. We could associate each
arrived packet with a random service time following the desired distribution. In this way, the newly arrived
packet's departure time would be the packet's arrival time plus this random service time if the queue seen by
this packet is empty and would be the immediately previous packet's departure time plus the service time
otherwise. We assume the server works in a FCFS manner and in work-conserving mode. Once we have the
recursive relation between departure times, the queueing system is easily simulated by updating the queue
in each inter-arrival time. We want to make 100% sure that the queue seen by an newly arrived packet is
the queue seen by this packet at its arrival time in reality. Assume tDn,σnand tAndenote the departure time
, service time and arrival time of this n-th arrival respectively. We have

tDn =
{

tAn + σn if queue empty
tDn−1 + σn othewise

The �rst customer's departure time would be the summation of its arrival time and service time. The
forthcoming packets may su�er delay in the queue. In simulation, I constructed an array which stores the
arrival time, service time and departure time accordingly. Once this information is known and should be
known when the simulation is done, the queue length at any time t is simply derived by examining if t falls
within the life time of each packet and summation over these packets satisfying above condition.

We have 3 types of averages: mean queue length seen by arrival, mean queue length seen by departure
and time average of the queue lengths. The �rst two average is event average and by PASTA, if the arrival
process is Poisson, the event average should be equal to the time average of the queue length. Arrival average
can be derived by examining the packets arrived before the packet under consideration and check if their
departure times are greater than current packet's arrival time. Symmetrically, departure average can be
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derived by examining the packets arrived after the packet of interest and check if their arrival times are
smaller than the current packet of interest's departure time.

In M|G|1 system, Polleczek-Khinchine Formula can be represented in Laplace-Stieljes form. If arrival is
Poisson, PASTA(Poisson Arrival see Time Average) tells the distribution of queue length seen by an arrival is
the stationary distribution of queue thus the average number of customers in the system(not including arrival
itself) is equal to the average number of customs in the system. Since the process is ergodic, that event average
is also equal to the time average of customs in the system. (E[L] =

∑∞
n=1 nπn = limt→∞ 1

t

∫∞
t=0

Q(t)dt.)

3.1. M|M|1 Queueing Model. In theory, M |M |1 queue with arrival rate λand service rateµrespectively
has the steady state queue length distribution with πn = (1−ρ)ρn whereρ = λ

µ . The average queue length is
E[L] =

∑inf
n=1 nπn = ρ

1−ρor by Polleczek-Khinchine Formula we get E[L] = ρ+ λ2E[σ2]
2(1−ρ) = ρ+ ρ2(C2+1)

2(1−ρ) = ρ
1−ρ .

By Little's Formula, we have E[L] = λE[S]where S is the average sojourn time. If we have λ = 5, µ = 6,
the mean length of the queue is ρ

1−ρ = 5and the mean sojourn time E[S] = 1second. The sojourn time S

distribution in M|M|1 system can be derived as follows:
S =

∑La+1
k=1 σk where σkis iid. exponentially distributed with parameter µ. The probability for

Pr(S > t) = Pr(
La+1∑

k=1

σk > t) = Pr(Pr(
n+1∑

k=1

σk > t)) Pr(La = n) = exp(−µ(1− ρ)t)

Thus the mean sojourn time is 1
µ(1−ρ) . The distribution of waiting time is Pr(W > t|W > 0) = ρ exp (−µ(1− ρ)t).

From my simulation shown in Figure5.1, both the time and event average are very close to the theoretical
value which is 5 customers in the queue. The average sojourn time which is 1.0089 also veri�es the Little's
Formula!

3.2. M |EK |1Queueing Model. In order to give a fair comparison with M |M |1model, we must have the
mean service time equaled to E[σ] = 1

µ = 1
6 .RecallEkdistribution corresponds to the distribution of k-

independent and identically distributed exponentially distributed random variables. Hence σ =
∑k

i=1 σiwhere
each σiwith mean 1

kµ and variance 1
(kµ)2

and the mean and variance of σwould be 1
µand 1

kµ2 respectively. Ac-
cording to the Pollaczek-Khinchine formula, we have the M |G|1system with mean number of customers/packets
equal to E[L] = ρ+ ρ2(C2+1)

2(1−ρ) = ρ+ ρ2

2(1−ρ)
k+1

k . If we have k = 4 in this simulation, then the expected number
of customers in the queue is 5

6 + (5/6)2

1/3
5
4 = 3.4375 and the mean sojourn time isE[S] = E[L]

λ = 0.6875 second.
The simulation results are shown in Figure5.2. We should notice that the average number of customers
in system M |E4|1 is smaller than that in system M |M |1. This is because though these two systems have
the sameρ = λ

µ , the coe�cients of variation C2 of Ekis smaller than that of Exponential distribution and
eventually Ekconverges to deterministic distribution.

If we set k = 40, the simulation results are shown in the following Figure5.3.
E[L] = 5

6 + (5/6)2

1/3
41
40 = 2.96875 and E[S] = E[L]

λ = 0.59375
In a general M|G|1 system, the Laplace-Stieljes transform of queue length at departure time is P d

L(z) =
(1−ρ)PA(z)(1−z)

PA(z)−z where PA(z)can be derived wrt. Laplace-Stieljes transform of service time.

PA(z) =
∞∑

n=0

∫ ∞

t=0

(λt)n

n!
e−λtfσ(t)dtZn =

∫ ∞

t=0

e−(λ−λz)tfσ(t)dt = G(λ− λz)
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where G(z)is the Laplace-Stieljes transform of service time σ. Hence

P d
L(z) =

(1− ρ)G(λ− λz)(1− z)
G(λ− λz)− z

For Erlang-K distribution with mean 1
µ , the corresponding Laplace-Stieljes transform of Erlang-K distrib-

ution is G(s) =
(

kµ
kµ+s

)k

, substitute G(λ−λz)into P d
L(z) =

(1−ρ)( kµ
kµ+λ−λz )k

(1−z)

( kµ
kµ+λ−λz )k . Inverse Laplace transform

of this term we can derive the queue length distribution for M |Ek|1system. The distribution of the number
of customers left behind upon departure of customers is equal to {dn}thus

dn =
∫ ∞

t=0

(λt)n

n!
e−λtfs(t)dt

hence PLd
(z) = S(λ− λz)and we get the Laplace-Stieljes transform of sojourn time is

S(s) =
(1− ρ)G(s)s
λG(s) + s− λ

which is another form of Polleczek-Khinchine formula. In our case, the Laplace-Stieljes transform of sojourn
time is denoted as

S(s) =
(1− ρ)

(
kµ

kµ+s

)k

s

λ
(

kµ
kµ+s

)k

+ s− λ

3.3. M |D|1Queueing Model. We set σ = 1
µ = 1

6and we have the following results:
In theory, the average number of customers and mean sojourn time is E[L] = ρ + ρ2(C2+1)

2(1−ρ) = 2ρ−ρ2

2(1−ρ) =
2.9167and E[S] = 2.9167

5 = 0.5833. Actually the Erlang-k distribution when k → inf will converge to
deterministic distribution with the same �rst moment. Proof is shown as follows:

Sinceσ =
∑k

i=1 σi, the MGF of MGFσ is MGFσ(s) =
[

µk
s+µk

]k

→ e
− s

µ

k→∞ which implies a deterministic
distribution with mean value of 1

µ . Hence the M |D|1 Queueing System is shown as bellows (Figure5.4) to
compare with the M |E40|1system.

P d
L(z) =

(1− ρ)e−
λ−λz

µ (1− z)

e−
λ−λz

µ − z

It is obviously seen that M |D|1 and M |E40|1 have similar distributions, which justi�es the above conclu-
sion. Besides, the M |D|1system has the smallest waiting time among M |Ek|1. From the mean-value ap-
proach, the mean waiting time E[W ] = ρE[R]

1−ρ = 5/6∗E[R]
1/6 = 5/12. By Little's law, the E[L] = λ[E[W ]+ 1

µ ] =
5[5/12 + 1/6] = 35/12 = 2.9167 which is the same to the results derived from Polleczek-Khinchine formula.

3.4. GI|M |1Queueing Model[7]. Let GI process to be random process with Ekdistribution. We investigate
queueing model when k = 1, 4, 25 respectively and λ = 1

5 , µ = 1
3.5 .

G|M|1 system queue length distribution seen by arrival/departure is not equal to the stationary distri-
bution of the queue length since arrival is not Poisson any more. The queue length distribution seen by
an arrival actually is quite similar to M|M|1 but with di�erent parameters. According to the embedded
Markovian chain upon arrival, the queue length distribution is P a

L(z) =
∑∞

n=0 σn(1 − ρ)znwhere σcan be
derived from this equation σ = A(µ− µσ)and A(S)is the moment generating function of inter-arrival time.
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The distribution of sojourn time for G|M|1 system isS(s) = E[e−] =
∑∞

n=0 σn(1− σ)
(

µ
µ+s

)n+1

= µ(1−σ)
µ(1−σ)+s

which implies the sojourn time distribution is exponential with parameter µ(1− σ).

3.4.1. E1|M |1 Model shown in Figure 5.5. This model is M|M|1 model in essence. The mean number of
customers in the system is E[L] = ρ

1−ρ = 2.33 in theory, the average number of customers seen by arrival is
2.2488 and time average of customers is 2.2862 which is very close.

3.4.2. E4|M |1 Model shown in Figure 5.6. The average number of customers seen by arrival is 1.2192 and
time average of customers is 1.5422 which has a larger variation. The probability the queue is not empty
seen by an arrival σ is derived from σ =

[
λk

µ−µσ+λk

]k

, solve this equation in interval (0, 1)and let k = 4we get
σ = 0.5529, thus the mean number of customers seen by an arrival is E[La] = σ

1−σ = 1.2366 which is very close
to our simulation results. a0 = 1−σ = 0.4471 and our simulation gives0.45, the same! The expected sojourn
time of an arbitrary packet is 1

µ(1−σ) = 7.828 secs and our simulation gives 7.7411secs. By Little's formula,
E[L] = λE[S]which implies the average number of customers in the system is E[L] = 1

57.828 = 1.5656 and
our simulation gives 1.5422. The simulation results are very close to theoretical values which shows the
validity of our simulation.

3.4.3. E25|M |1 Model shown in Figure 5.7. The average number of customers seen by arrival is 0.88696
and time average of customers is 1.3111 which has a signi�cant variation. If the arrival process is not
Poisson, the timing average E[L]is not equal to the event averageEA[L]orED[L] which implies PASTA does
not hold any more. The theoretical values are derived from σ =

[
λk

µ−µσ+λk

]k

, we get σ = 0.4828 and we get
σsim = 1− a0 = 0.48, almost the same results again!

3.5. D|M |1 Queueing Model. Let the arrival process be a deterministic process with inter-arrival time 1
λ .

Note that the D|M |1system (Shown in Figure 5.8) has the smallest waiting time among all Ek|M |1systems.
In theory σ = e−

µ−µσ
λ which immediately gives σ = 0.4670and our simulation gives σsim = 1−a0 = 1−0.53 =

0.47.

4. Conclusions
The simulation results for various types of queueing models are shown as follows. The simulation results are

very close to the theoretical values which demonstrates the correctness of our simulations. Ekdistribution
when k increases, it asymptotically approximates deterministic distribution which can be veri�ed by the
simulation results between D|M |1and Ek|M |1, M |D|1andM |Ek|1. When the arrival process is not Poisson
distributed, the time average is not equal to event average any more. For M |G|1systems, we could use
Pollaczek-Khinchine formula and Little's Formula to determine the mean customers in the queue and mean
sojourn time and the simulation results justi�ed the formulae well above.

5. Some Core Simulation Code
Stopping Time=10000;
lambda=5;
mu=6;
AccArrivals=0;
TimeElapsed=0;
QueueLenAtArrival=0;
UniRV=MTRNG;
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InterArrival=-1/lambda*log(1-UniRV);
UniRV=MTRNG;
ServiceTime=-1/mu*log(1-UniRV);
while (TimeElapsed<StoppingTime)

AccArrivals=AccArrivals+1;

CustomerRec(AccArrivals,1)=TimeElapsed+InterArrival;%Arrival Time
CustomerRec(AccArrivals,2)=ServiceTime;%service time

if QueueLenAtArrival==0 %
CustomerRec(AccArrivals,3)=CustomerRec(AccArrivals,1)+ServiceTime;

else
CustomerRec(AccArrivals,3)=CustomerRec(AccArrivals-1,3)+ServiceTime;

end

if QueueLenAtArrival==0 % Len Seen By an arrival
QueueAtArrival(1)=AccArrivals;
QueueLenAtArrival=1;

else
QueueAtArrival(QueueLenAtArrival+1)=AccArrivals;
QueueLenAtArrival=QueueLenAtArrival+1;

end

%Calculate departures in this interarrival time
TimeElapsed=TimeElapsed+InterArrival;

UniRV=MTRNG;
InterArrival=-1/lambda*log(1-UniRV);
UniRV=MTRNG;
ServiceTime=-1/mu*log(1-UniRV);

MaxDeparturedIndex=max(find(CustomerRec(QueueAtArrival(1:QueueLenAtArrival),3)
<=(TimeElapsed+InterArrival)));

if size(MaxDeparturedIndex,1)~=0 % Departure Exists
QueueAtArrival(1:QueueLenAtArrival-MaxDeparturedIndex)=

QueueAtArrival(MaxDeparturedIndex+1:QueueLenAtArrival);
QueueLenAtArrival=QueueLenAtArrival-MaxDeparturedIndex;

end

end
%Calculate Qlength Distributions (in steady state) Event Average By
%Arrival/departure and Time Average
SteadyShift=ceil(AccArrivals/10); %Assume steady state starts from 10%
QA=zeros(1,AccArrivals-SteadyShift+1); %Event Average By arrival
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for ArrivalIndx=SteadyShift:AccArrivals
ArrivalTime=CustomerRec(ArrivalIndx,1);
QA(ArrivalIndx-SteadyShift+1)=size(find(CustomerRec(1:ArrivalIndx-1,3)>ArrivalTime),1);

end
MaxQlen=max(QA);
PrAQn=zeros(1,MaxQlen+1);
for loopindx=1:AccArrivals-SteadyShift+1

PrAQn(QA(loopindx)+1)=PrAQn(QA(loopindx)+1)+1;
end
PrAQn=PrAQn/(AccArrivals-SteadyShift+1);
EQA=sum(PrAQn.*(0:MaxQlen));
QD=zeros(1,AccArrivals-SteadyShift+1); %Event Average By Departure
for DepartureIndx=SteadyShift:AccArrivals

DepartureTime=CustomerRec(DepartureIndx,3);
QD(DepartureIndx-SteadyShift+1)=size(find(CustomerRec(DepartureIndx+1:AccArrivals,1)

<DepartureTime),1);
end
MaxQlen=max(QD);
PrDQn=zeros(1,MaxQlen+1);
for loopindx=1:AccArrivals-SteadyShift+1

PrDQn(QD(loopindx)+1)=PrDQn(QD(loopindx)+1)+1;
end
PrDQn=PrDQn/(AccArrivals-SteadyShift+1);
EQD=sum(PrDQn.*(0:MaxQlen));
%Calculate Time Average
Q=zeros(3,2*AccArrivals);
Q(1,:)=[CustomerRec(:,1).',CustomerRec(:,3).'];
Q(1,:)=sort(Q(1,:));
Q(3,1)=1;
for loop=1:2*AccArrivals

pos=find(Q(1,loop)==CustomerRec(:,1));
if size(pos,1)~=0

Q(2,loop)=1;
else

Q(2,loop)=-1;
end

end
for loop=2:2*AccArrivals

Q(3,loop)=Q(3,loop-1)+Q(2,loop);
end
Area=0;
for loop=1:2*AccArrivals-1

Area=Area+Q(3,loop)*(Q(1,loop+1)-Q(1,loop));
end
EQ=Area/Q(1,2*AccArrivals);
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Figure 5.2. M |E4|1Queueing Model
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Figure 5.3. M |E40|1Queueing Model
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Figure 5.4. M|D|1 Queueing Model
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Figure 5.5. E1|M |1Queueing Model
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Figure 5.6. E4|M |1Queueing Model
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Figure 5.7. E25|M |1Queueing Model
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Figure 5.8. D|M|1 Queueing Model


